Publications

Our recent review in Journal of Physics: Energy summarises the state-of-the-art in sodium-ion batteries:

2021 roadmap for sodium-ion batteries

Our Faraday Institution Insight article provides a general introduction:

Sodium-Ion Batteries: Inexpensive and Sustainable Energy Storage

We have listed further project publications below:

  1. Oxygen Redox Activity through a Reductive Coupling Mechanism in the P3-Type Nickel-Doped Sodium Manganese Oxide; Kim, E.; Ma, L.; Duda, L.C.; Pickup, D.M.; Chadwick, A.V.; Younesi, R.; Irvine, J.T.S.; Armstrong, A.R.; ACS Appl. Energy Mater.; (Dec 2019) https://doi.org/10.1021/acsaem.9b02171.
  2. Advances in Organic Anode Materials for Na‐/K‐Ion Rechargeable Batteries; Desai, A.V.; Morris, R.E.; Armstrong A.R.; ChemSusChem. (July 2020) https://doi.org/10.1002/cssc.202001334.
  3. Surface engineering strategy using urea to improve the rate performance of Na2Ti3O7 in Na‐ion batteries; Costa, S.I.R.; Choi, Y.S.; Fielding, A.J.; Naylor, A.J.; Griffin, J.M.; Sofer, Z.; O’ Scanlon, D.; Tapia-Ruiz, N.; Chem. Eur. J. (Aug 2020) https://doi.org/10.1002/chem.202003129.
  4. Vacancy enhanced oxygen redox reversibility in P3-type magnesium doped sodium manganese oxide Na0.67Mg0.2Mn0.8O2; Kim, E.; Ma, L.A.; Pickup, D.; Chadwick, A.V.; Younesi, R.; Maughan, P.; Irvine, J.T.S.; Armstrong, A.R.; ACS Appl. Energy Mater. (Sept 2020) https://doi.org/10.1021/acsaem.0c01352.
  5. Activation of anion redox in P3 structure Na0.6Co0.2Mn0.8O2 via introduction of transition metal vacancies; Kim, E.; Mofredj, K.; Pickup, D.M.; Chadwick, A.V.; Irvine, J.T.S.; Armstrong, A.R.; J Power Sources; (Jan 2021) https://doi.org/10.1016/j.jpowsour.2020.229010.
  6. Extending the Performance Limit of Anodes: Insights from Diffusion Kinetics of Alloying Anodes; Yong‐Seok Choi, David O. Scanlon and Jae‐Chul Lee; Advanced energy Material. Published: 28 December 2020.
  7. Complementary sample preparation strategies (PVD/BEXP) combining with multifunctional SPM for the characterizations of battery interfacial properties; Handian Pan, Yue Chen, Wenhui Pang, Hao Sun, Jiaxin Li, Yingbin Lin, Oleg Kolosov, Zhigao Huang; MethodsX; Published: 01 November 2020.
  8. Na2Fe(C2O4)(HPO4): a promising new oxalate-phosphate based mixed polyanionic cathode for Li/Na ion batteries; Pramanik A, Bradford A, Lee S, Lightfoot P, Armstrong A; J. Phys. Mat.; Published 25 February 2021.
  9. Surface or bulk? Real-time manganese dissolution detection in a lithium-ion cathode; Shahin Nikman , Dongni Zhao, Violeta Gonzalez-Perez, Harry H. Hoster, Stijn F. L. Mertens; Electrochimica Acta; Published: 24 April 2021.
  10. 2021 roadmap for sodium-ion batteries; Nuria Tapia-Ruiz, A Robert Armstrong, Hande Alptekin, Marco A Amores, Heather Au, Jerry Barker, Rebecca Boston, William R Brant, Jake M Brittain, Yue Chen, Manish Chhowalla, Yong-Seok Choi, Sara I R Costa, Maria Crespo Ribadeneyra, Serena A Cussen, Edmund J Cussen, William I F David, Aamod V Desai, Stewart A M Dickson, Emmanuel I Eweka, Juan D Forero-Saboya, Clare P Grey, John M Griffin, Peter Gross, Xiao Hua, John T S Irvine, Patrik Johansson, Martin O Jones, Martin Karlsmo, Emma Kendrick, Eunjeong Kim, Oleg V Kolosov, Zhuangnan Li, Stijn F L Mertens, Ronnie Mogensen, Laure Monconduit, Russell E Morris, Andrew J Naylor, Shahin Nikman, Christopher A O’Keefe, Darren M C Ould, R G Palgrave, Philippe Poizot, Alexandre Ponrouch, Stéven Renault, Emily M Reynolds, Ashish Rudola, Ruth Sayers, David O Scanlon, S Sen, Valerie R Seymour, Begoña Silván, Moulay Tahar Sougrati, Lorenzo Stievano, Grant S Stone, Chris I Thomas, Maria-Magdalena Titirici, Jincheng Tong, Thomas J Wood, Dominic S Wright and Reza Younesi; J Phys Energy; Published: 26 July 2021.
  11. P2–Na2/3Mg1/4Mn7/12Co1/6O2 cathode material based on oxygen redox activity with improved first-cycle voltage hysteresis; Nuria Tapia-Ruiz, Cindy Soares, James W.Somerville, Robert A.House, Juliette Billaud, Matthew R.Roberts, Peter G.Bruce; Journal of Power Sources; Published: 15 September 2021.
  12. Pillared Mo2TiC2 MXene for high-power and long-life lithium and sodium-ion batteries. Maughan, P.A.; Bouscarrat, L.; Seymour, V.R.; Shao, S.; Haigh, S.J.; Dawson, R.; Tapia-Ruiz, N.; Bimbo, N.;  Nanoscale Advan. (June 2021) https://doi.org/10.1039/D1NA00081K
  13. Sodium-Ion Batteries: Current Understanding of the Sodium Storage Mechanism in Hard Carbons; Jack Fitzpatrick,  and Sara Costa Rodrigues,  and Nuria Tapia-Ruiz;  Johnson Matthey Technology Review; Published: 29 June 2021.
  14. Controlling Interfacial Reduction Kinetics and Suppressing Electrochemical Oscillations in Li4Ti5O12 Thin-Film Anodes; Yue Chen, Handian Pan, Chun Lin, Jiaxin Li, Rongsheng Cai, Sarah J. Haigh, Guiying Zhao, Jianmin Zhang, Yingbin Lin, Oleg V. Kolosov, and Zhigao Huang; Advanced Functional Materials; Published: 06 August 2021.
  15. Correlating Local Structure and Sodium Storage in Hard Carbon Anodes: Insights from Pair Distribution Function Analysis and Solid-State NMR; Joshua M. Stratford, Annette K. Kleppe, Dean S. Keeble, Philip A. Chater, Seyyed Shayan Meysami, Christopher J. Wright, Jerry Barker, Maria-Magdalena Titirici, Phoebe K. Allan, and Clare P. Grey; JACS; Published: 25 August 2021.
  16. Ion dynamics in fluoride-containing polyatomic anion cathodes by muon spectroscopy; Beth Johnston, Peter J Baker and Serena Cussen; J Phys Materials; Published: 01 September 2021.
  17. New Route to Battery Grade NaPF6 for Na-Ion Batteries: Expanding the Accessible Concentration; Darren M. C. Ould, Svetlana Menkin ,Christopher A. O’Keefe,  Fazlil Coowar, Jerry Barker, Clare P. Grey, Dominic Wright; Angewandte Chemie; Published: 14 September 2021.
  18. Mechanochemical synthesis of sodium carboxylates as anode materials in sodium ion batteries; Daniel N. Rainer, Aamod V. Desai, A. Robert Armstrong, Russell E. Morris; J. Mater. Chem. A; Published: 2 November 2021.
  19. Exploring solid-electrolyte-interphase in rechargeable batteries: New methodology for nanoscale studies via “3D Nanorheology Microscopy”; Yue Chen, Oleg V. Kolosov; Imaging & Microscopy; Published: 17 November 2021.
  20. Solvothermal Synthesis of a Novel Calcium Metal-Organic Framework: High Temperature and Electrochemical Behaviour; Russell M. Main, David B. Cordes, Aamod V. Desai, Alexandra M. Z. Slawin, Paul Wheatley, A. Robert Armstrong, Russell E. Morris; Molecules; Published: 22 November 2021.
  21. Rapid microwave-assisted synthesis and electrode optimization of organic anode materials in sodium-ion batteries; Aamod V. Desai, Daniel N. Rainer, Atin Pramanik, Joel M. Cabañero, Russell E. Morris, A. Robert Armstrong; Small Methods; Published: 15 December 2021.
  22. Na2.4Al0.4Mn2.6O7 anionic redox cathode material for sodium-ion batteries – a combined experimental and theoretical approach to elucidate its charge storage mechanism; Cindy Soares, Begoña Silván, Yong-Seok Choi, Veronica Celorrio, Valerie R. Seymour, Giannantonio Cibine, John M. Griffin, David O. Scanlon and Nuria Tapia-Ruiz; J. Mater. Chem. A; Published: 16 December 2021.
  23. A structural investigation of organic battery anode materials by NMR crystallography; Tommy Whewell, Valerie R. Seymour, Kieran Griffiths, Nathan R. Halcovitch, Aamod V. Desai, Russell E. Morris, A. Robert Armstrong, John M. Griffin; Magn. Reson. Chem.; Published: 12 Jauary 2022.
  24. Importance of superstructure in stabilizing oxygen redox in P3- Na0.67Li0.2Mn0.8O2; Eun Jeong Kim, Philip A. Maughan, Euan Bassey, Raphaële J. Clément, Le Anh Ma, Laurent C. Duda, Divya Sehrawat, Reza Younesi. Neeraj Sharma, Clare P. Grey, A. Robert Armstrong; Adv. Energy Materials; Published: 20 January 2022.
  25. Enhanced Oxygen Redox Reversibility and Capacity Retention of Titanium-Substituted Na4/7[□1/7Ti1/7Mn5/7]O2 in Sodium-Ion Batteries; Stephanie Linnell, Eun Jeong Kim, Yong-Seok Choi, Moritz Hirsbrunner, Saki Imada, Atin Pramanik, Aida Fuente Cuesta, David Miller, Edoardo Fusco, Bela E Bode, John Irvine, Laurent Duda, David O. Scanlon and Anthony Robert Armstrong; J. Mater. Chem. A; Published: 30 March 2022.
  26. Exploring the gel part of solid-state interphase in rechargeable batteries via 3D Nanorheology microscopy; Yue Chen and Oleg Kolosov; Microanalysis and Analysis; Published: March 2022.
  27. Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries; Dose, W.M.; Temprano, I; Allen, J.P.; Björklund, E.; O’Keefe, C.A.; Li, W.; Mehdi, B.L.; Weatherup, R.S.; De Volder, M.F.L; Grey, C.P.; ACS Appl. Mater. Interfaces. (Mar 2022) https://doi.org/10.1021/acsami.1c22812
  28. Sodium Borates: Expanding the Electrolyte Selection for Sodium-Ion Batteries; Darren M. C. Ould, Svetlana Menkin, Holly E. Smith, Victor Riesgo Gonzalez, Erlendur Jónsson, Christopher A. O’Keefe, Fazlil Coowar, Jerry Barker, Andrew D. Bond, Clare P. Grey, Dominic Wright; Angewandte Chemie; Published: 12 April 2022.
  29. Enhanced Cycling Stability in the Anion Redox Material P3-Type Zn-Substituted Sodium Manganese Oxide; Stephanie F. Linnell, Moritz Hirsbrunner, Saki Imada, Giannantonio Cibin, Aaron B. Naden, Alan V. Chadwick, John T. S. Irvine, Laurent C. Duda, Anthony Robert Armstrong; ChemElectroChem; Published: 20 April 2022.
  30. Exploiting anion and cation redox chemistry in lithium-rich perovskite oxalate: A novel next-generation Li/Na-ion battery electrode; Atin Pramanik, Alexis G. Manche, Rebecca Clulow, Philip Lightfoot, A. Robert Armstrong; Dalton Transactions; Published: 25 July 2022.
  31. Effect of Ti Substitution on the Properties of P3 structure Na2/3Mn0.8Li0.2O2 Showing a Ribbon Superlattice; Stephanie Linnell, Eun Jeong Kim, Le Anh Ma, Aaron Naden, John Irvine, Reza Younesi, Laurent Duda, Anthony Robert Armstrong; ChemElectroChem; Published:19 September 2022.
  32. Effect of Cu Substitution anion redox behaviour in P3-type sodium manganese oxides; Stephanie Linnell, Alexis Manche, Yingling Liao, Moritz Hirsbrunner, Saki Imada, Aaron B. Naden, John T. S. Irvine, Laurent Duda, A. Robert Armstrong; J.Phys. Energy; Published: 19 September 2022.
  33. Editorial: Sodium-ion batteries: From materials discovery and understanding to cell development; Hasa, I.; Tapia-Ruiz, N.; Galceran, M.; Front. Energy Res.(Nov 2022) https://doi.org/10.3389/fenrg.2022.1076764
  34. Azo-Functionalised Metal-Organic Framework for Charge Storage in Sodium-ion Batteries; Desai, A.V.; Seymour, V.R.; Ettlinger, R.; Pramanik A.; Manche, A.G.; Rainer, D.N.; Wheatley, P.S.; Griffin, J.M.; Morris, R.E.; Armstrong A.R.; Chemical Communications (Dec 2022) https://doi.org/10.1039/D2CC06154F
  35. Intrinsic Defects and Their Role in the Phase Transition of Na-Ion Anode Na2Ti3O7; Choi Y-S.; Costa, S.I.R.; Tapia-Ruiz, N.; Scanlon, D.O.; ACS Appl. Energy Mater. (Dec 2022) https://doi.org/10.1021/acsaem.2c03466
  36. BOOK CHAPTER: Chapter 4 Sodium Layered Oxide Cathode Materials; Armstrong, A.R.; Linnell, S.F.; Maughan, P.A.; Silvan, B.; Tapia-Ruiz, N.; Sodium-Ion Batteries – Materials, Characterization, and Technology. (Dec 2022) https://doi.org/10.1002/9783527825769.ch4
  37. Tunable electrical field-induced metal-insulator phase separation in LiCoO2 synaptic transistor operating in the post-percolation region; Zhang, W.; Chen, Y.; Xu, C.; Lin, C.; Tao, J.; Lin, Y.; Li, J.; Kolosov, O.V.; Huang, Z.; Nano Energy (Jan 2023) https://doi.org/10.1016/j.nanoen.2023.108199.
  38. Influence of electrode processing and electrolyte composition on multiwall carbon nanotube negative electrodes for sodium ion batteries; Cuesta, A.F.; Dickson, S.A.M; Naden, A.B.; Lonsdale, C.; Irvine, J.T.S.; J.Phys.Energy (Feb 2023) https://doi.org/10.1088/2515-7655/acb3fc
  39. Manipulating O3/P2 phase ratio in bi-phasic sodium layered oxides via ionic radius control; Maughan, P. A.; Naden, A. B.; Irvine, J. T. S.; Armstrong, A. R.; Commun. Mater. (Feb 2023) https://doi.org/10.1038/s43246-023-00337-8
  40. BOOK CHAPTER: 5.09 – Materials synthesis for Na-ion batteries; Entwistle, J.; Zhang, L.; Zhang, H.; Tapia-Ruiz, N.; Comprehensive Inorganic Chemistry III (Feb 2023) https://doi.org/10.1016/B978-0-12-823144-9.00195-3
  41. K2Fe(C2O4)2: An Oxalate Cathode for Li/Na-Ion Batteries Exhibiting a Combination of Multielectron Cation and Anion Redox; Pramanik, A.; Manche, A.G.; Sougrati, M.T.; Chadwick, A.V.; Lightfoot, P.; Armstrong, A.R; Chemistry of Materials (Mar 2023) https://doi.org/10.1021/acs.chemmater.3c00063.
  42. Nanoarchitecture factors of solid–electrolyte interphase formation via 3D nano-rheology microscopy and surface force-distance spectroscopy; Chen, Y.; Wu, W.; Gonzalez Munoz, S.; Forcieri, L.; Wells, C.; Jarvis, S.; Wu, F.; Young, R.; Dey, A.; Isaaks, M.; Nagarathinam, M.; Palgrave, R.; Tapia-Ruiz, N.; Kolosov, O.; Nature Communications (Mar 2023) https://doi.org/10.1038/s41467-023-37033-7.
  43. High Energy Density Li/Ni/Co-Free O3/P2 Sodium Layered Oxide Intergrowth for Na-ion Batteries; Maughan, P.A.; Naden, A.B.; Irvine, J.T.S.; Armstrong, A. R.; Batteries & Supercaps (May 2023) https://doi.org/10.1002/batt.202300089.
  44. Single-source formation and assessment of nitrogen-doped graphitic spheres for lithium- and sodium-ion batteries; Clark, C.; O’Keefe, C.A.; Wright, D.S.; Grey, C.P.; RS Advances (May23) https://doi.org/10.1039/D3RA01409F.
  45. An ionic liquid synthesis route for mixed-phase sodium titanate (Na2Ti3O7 and Na2Ti6O13) rods as an anode for sodium-ion batteries; Kumari, P.; Li, Y.; Boston, R.; Nanoscale (June 2023) https://doi.org/10.1039/D3NR00639E.
  46. KFe(C2O4)F: A Fluoro-oxalate Cathode Material for Li/Na-Ion Batteries
    Pramanik, A.; Manche, A.G; Smeaton, M.T.; Sougrati, M.T.; Lightfoot, P.; Armstrong, A.R.; ChemElectroChem. (June 2023) https://doi.org/10.1002/celc.202300192.
  47. Insights into soft short circuit-based degradation of lithium metal batteries Menkin, S.; Fritzke, J.B.; Larner, R.; de Leeuw, C.; Choi, Y.; Gunnarsdóttir, A.B.; Grey, C.P.; Faraday Discuss. (June 2023) https://doi.org/10.1039/D3FD00101F.
  48. Investigations into improved electrochemical performance of Sn doped Hard carbons as negatives for Na-ion batteries; Tripathi, A.; Murugesan, C.; Naden, A.; Curran, P.; Kavanagh, C.; Condliffe, J.M.; Armstrong, R.; Irvine, J.T.S.; Batteries & Supercaps (21 August 2023) https://doi.org/10.1002/batt.202300225.
  49. Green Synthesis of Reticular Materials; Desai, A.V.; Lizundia, E.; Laybourn, A.; Rainer, D.N.; Armstrong, A.R.; Morris, R.E.; Wuttke, S.; Ettlinger. R.; Adv. Funct. Mater. (Sept 2023) https://doi.org/10.1002/adfm.202304660.
  50. Sodium Tetrakis(hexafluoroisopropyloxy)aluminates: Synthesis and Electrochemical Characterisation of a Room-Temperature Solvated Ionic Liquid; Ould, D. M. C.; Menkin, S.; Smith, H. E.; Riesgo-González, V.; Smith, T.H.; Chinn, M. N. B.; Jónsson, E.; Bond, A. D.; Grey, C. P.; Wright, D. S.; ChemElectroChem (September 2023) https://doi.org/10.1002/celc.202300381.
  51. Synthesis and design of NaNi1/3Fe1/3Mn1/3O2 cathode materials for long-life sodium-ion batteries; Song, T.; Zhang, Q.; Chen, Y.; Zhu, P.; Kendrick, E.; Chemical Engineering Jouyrnal Advances (Nov 3023) https://doi.org/10.1016/j.ceja.2023.100572
  52. Inside Energy Storage Materials – Diffraction and Spectroscopic Methods for Battery Research; Reeves-McLaren, N.; AIP Publishing LLC (Feb 2024). https://doi.org/10.1063/9780735424197.
  53. Rapid preparation of binary mixtures of sodium carboxylates as anodes in sodium-ion batteries; Desai, A.V.; Ettlinger, R.; Seleghini, H.S.; Stanzione, M.G.; Cabanero Jr., J.M; Ashbrook, S.E.; Morris, R.E.; Armstrong, A.R.; J. Mater. Chem. A. (April 2024) https://doi.org/10.1039/d3ta06928a.
  54. Electron paramagnetic resonance as a tool to determine the sodium charge storage mechanism of hard carbon; Wang, B.; Fitzpatrick, J.R; Brookfield, A.; Fielding, A.J.; Reynolds, E.; Entwistle, J.; Tong, J.; Spencer, B.F.; Baldock, B.; Hunter, K.; Kavanagh C.M.; Tapia-Ruiz, N; Nature Communications (April 2024) https://doi.org/10.1038/s41467-024-45460-3
  55. Operando nano-mapping of sodium-diglyme co-intercalation and SEI formation in sodium ion batteries’ graphene anodes; Chen, Y.; Zhang, S.; Zhang, W.; Quadrelli, A.; Jarvis, S; Chen, J.; Lu, L.; Mangayarkarasi, N; Niu, Y.; Tao, J.; Zhang, L.; Li, J.; Lin, Y.; Huang, Z; Kolosov, O.; Applied Physics Reviews (May 2024) https://doi.org/10.1063/5.0196568
  56. Monitoring the Behavior of Na Ions and Solid Electrolyte Interphase Formation at an Aluminum/Ionic Liquid Electrode/Electrolyte Interface via Operando Electrochemical X-ray Photoelectron Spectroscopy; Lee, R.; Nunney, T. S.; Isaacs, M.; Palgrave, R.G.; Dey, A.; ACS Appl. Mater. Interfaces (June 2024) https://doi.org/10.1021/acsami.4c02241
  57. Investigation of sodium insertion in hard carbon with operando small angle neutron scattering; Reynolds, E.M.; Fitzpatrick, J.; Jones, M.O.; Tapia-Ruiz, N.; Playford, H.Y.; Hull, S.; McClelland, I.; Baker, P.J.; Cussen, S.A.; Pérez, G.E.; Journal of Materials Chemistry A (June 2024) https://doi.org/10.1039/D3TA04739C
  58. Nonequilibrium fast-lithiation of Li4Ti5O12 thin film anode for LIBs; Chen, Y.; Zhang, S.; Ye, J.; Zheng, X.; Zhang, J.; Mangayarkarasi, N.; Niu, Y.; Lu, H.; Zhao, G.; Tao, J.; Li, J.; Lin, Y.; Kolosov, O.V.; Huang, Z.; Communications Physics (August 2024) https://doi.org/10.1038/s42005-024-01775-7
  59. Sustainable Hard Carbon as Anode Materials for Na‐Ion Batteries: From Laboratory to Upscaling; Guo, Z.; Zheng, K.; Wang, M.; Huang, Y.; Zhao, Y.; Au, H.; Titirici, M.-M.; Batteries & Supercaps (Aug 2024); https://doi.org/10.1002/batt.202400428
  60. Effects of Storage Voltage upon Sodium-Ion Batteries; Song, T; Kishore, B; Lakhdar, Y; Chen, L; Slater, P.R; Kendrick, E; batteries; (October 2024); https://doi.org/10.3390/batteries10100361
  61. Deciphering the structural and kinetic factors in lithium titanate for enhanced performance in Li+/Na+ dual-cation electrolyte; Chen, Y.; Zhang, S.; Zhao, D.; You, Z.; Niu, Y.; Zeng, L.; Mangayarkarasi, N.; Kolosov, O.V.; Tao, J.; Li, J.; Lin, Y.; Zheng, Y.; Zhang, L.; Huang, Z.; Journal of Colloid and Interface Science (December 2024) https://doi.org/10.1016/j.jcis.2024.07.159
  62. NaLiFe(C2O4)2: A Polyanionic Li/Na-ion Battery Cathode Exhibiting Cationic and Anionic Redox; Pramanik, A.; Manche, A.G.; Lindgren, F.; Ericsson, T.; Häggström, L.; Cordes D.B.; Armstrong, A.R.; Energy Storage Materials (Nov 2024) https://doi: 10.1016/j.ensm.2024.103821